Ranking With Cluster-Based Non-Segregated Approach to Multi-Document Categorization

نویسندگان

  • T. Sathish kumar
  • V. Sharmila
چکیده

To summarization of one or more document aims to create a strong summary while retaining the main characteristics of the original set of documents. To cover a number of topic with each theme represented by a cluster of highly related sentences. Sentence clustering is used, it directly generates clusters integrated with ranking. Ranking distribution for sentence in each and every cluster is different in nature which may serve as features of clusters and new clustering measures of sentences can be calculated. To improve the performance of summarization, we will focus on the Influence of document and Proper information Such as Document cluster and Topic query.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-topic Text Categorization Based on Ranking Approach

This paper is devoted to the multi-topic (multilabel) text classification problem. We propose two methods for reduction from ranking to the multi-label case. Unlike existing multi-label classification methods based on reduction from ranking problem, where the complex classification (threshold) function is being defined on the input feature space, in our approach we propose the construction of s...

متن کامل

Multi-Index Performance Ranking Model of Banks and Credit Institutions in Iran

From the perspective of banking and financial supervision, paying attention to the performance of banks and credit institutions and comparing their performance through ranking has become a necessary and inevitable issue. Also, the need for performance rating information to properly understand the economic situation of the country and efforts to improve it and the optimal allocation of resources...

متن کامل

Feature ranking for multi-label classification using predictive clustering trees

In this work, we present a feature ranking method for multilabel data. The method is motivated by the the practically relevant multilabel applications, such as semantic annotation of images and videos, functional genomics, music and text categorization etc. We propose a feature ranking method based on random forests. Considering the success of the feature ranking using random forest in the task...

متن کامل

A Comparison of Text Categorization Methods

In this paper firstly I have compared Single Label Text Categorization with Multi Label Text Categorization in detail then I have compared Document Pivoted Categorization with Category Pivoted Categorization in detail. For this purpose I have given the general definition of Text Categorization with its mathematical notation for the purpose of its frugality and cost effectiveness. Then with the ...

متن کامل

Segmentation-based Feature Selection for Text Categorization

Text categorization is an interesting problem in artificial intelligence that gets more and more attention from researchers and industry. One central problem of text categorization is the selection of a good feature set. We propose a novel method for term selection for each category based on segmenting the documents belonging to a category into cohesive sub-parts that define the subtopics of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014